

THE JOURNEY OF A SEED IN A GENEBANK

Genebanks conserve and make available the crop diversity needed to adapt our agriculture to present and future challenges. To prevent invaluable diversity from being lost forever, genebanks follow well established standards and best practices.

COLLECTING

COLLECTING is one of the ways through which genebanks obtain new diversity for their collections. Genebanks periodically seview the need for new, unique diversity and identify geographic regions and sites where they can obtain it. Collecting expeditions are planned to acquire new material for their collections.

2. POST-ENTRY QUARANTINE

IN THIS STEP, new material [either acquired via donation or collecting] is held in an isolated facility to assess its phytosanitary status, i.e., whether it is infected with a pest or disease. It is observed, tested and, if necessary, treated before entering the genebank collection. This important process prevents the spread of pests and diseases, and ultimately, safeguards the health of the genebank's collection.

DATA MANAGEMENT

DATA MANAGEMENT refers to the activities related to the custodianship, documentation, protection and accessibility of the genebanis's body of knowledge. This may include documents, databases, images, videos, websites, metadata, software, manuals, hiports, policies, procedures and records. Accurate and updated genebank data ensures consistency and quality in management and provides evidence of compliance with standards. Most genebanks have a decicated data management system.

and with high wability rates are indispensable for long-term conservation.

4. REGENERATION

THIS IS A CRITICAL STEP in geneback management in which seed accessions with low seed numbers or low viability rates (+85% for cultivated species) are sown in the field to produce fresh seeds, which are then stored in turn. Understanding the maring and polination systems of each species is necessary to implement proper regenerations, ensuring that the genetic identity and integrity of the accessions are maintained.

8. SAFETY

TO MITIGATE RISK, genebanks safety duplicate their collections at two levels: one displicate is placed in another actively menaged genebank, preferably on a different continent [if possible], and another is deposited at the Svalbard Global Seed Vault in Norway.

6. CONSERVATION

GENERANKS CONSERVE seeds in two types of conditions: the most original samples are part of the base collection, which is maintained in long-term storage [UTS] at +18+3°C, 15+3°X relative humidity. Samples in the active collection are maintained untermedium-term storage [MTS] at 5+10°C, 15±3% relative humidity. These temperature and relative humidity regimes are achieved using specialized freezers, cabinets or tailoned colid rooms. During this stage, genebank staff monitor seed quality and quantity at specific intervals to identify samples in need of recomeration.

5. CHARACTERIZATION

THIS STEP often occurs during regeneration. As newly sown seeds develop into plants, they display various characteristics that make accessions different from each other. Genebank staff record plant height, the shape of leaves, the color of the flowers and other plant characteristics following agreed descriptor lists. The importance of this step lises in the added value to the collections, e.g., in helping users decide which samples to request. These plant descriptions are also helpful in genebank management to detect possible hybridizations between samples or duplicates, as well as accidental mixing.

7. DISTRIBUTION

GENERANKS RECEIVE germplasm requests via mail, email, phone calls, in persion and through their websites. Genebank staff fulfill requests by selecting samples, packing them in an envelope or box, and including the required documentation about the samples (country of origin, plant characteristics, conditions of use and distribution etc.). The consignment is sent to the recipient via the fastest way possible, usually by courier.

GENERANK USERS include plant breeders, farmers, researchers and students.

ensuring collections are safe - and available for use - over the long term.

of Nigeria, Zambia, Kenya, Ethiopia and Ghana to reach international standards of operation,

4. REGENERATION

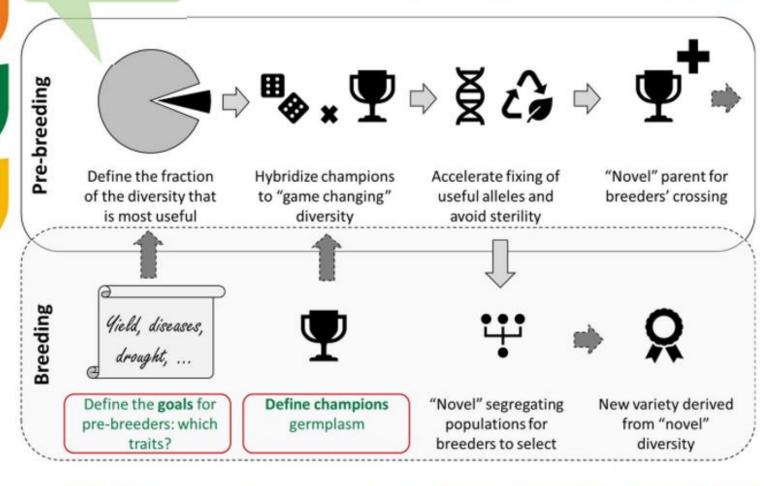
bank management in which seed accessions with low seed numbers or low viability rates (<85% for cultivated species) are sown in the field to produce fresh seeds, which are then stored in turn. Understanding the mating and pollination systems of each species is necessary to implement proper regenerations, ensuring that the genetic identity and integrity of the accessions are maintained.

5. CHARACTERIZATION

THIS STEP often occurs during regeneration. As newly sown seeds develop into plants, they display various characteristics that make accessions different from each other. Genebank staff record plant height, the shape of leaves, the color of the flowers and other plant characteristics following agreed descriptor lists. The importance of this step lies in the added value to the collections, e.g., in helping users decide which samples to request. These plant descriptions are also helpful in genebank management to detect possible hybridizations between samples or duplicates, as well as accidental mixing.

Genesys Accession data > Directory > Resources > My List and abilities resistance in unreplicated field experiments. Partner AfricaRice Africa Rice Center

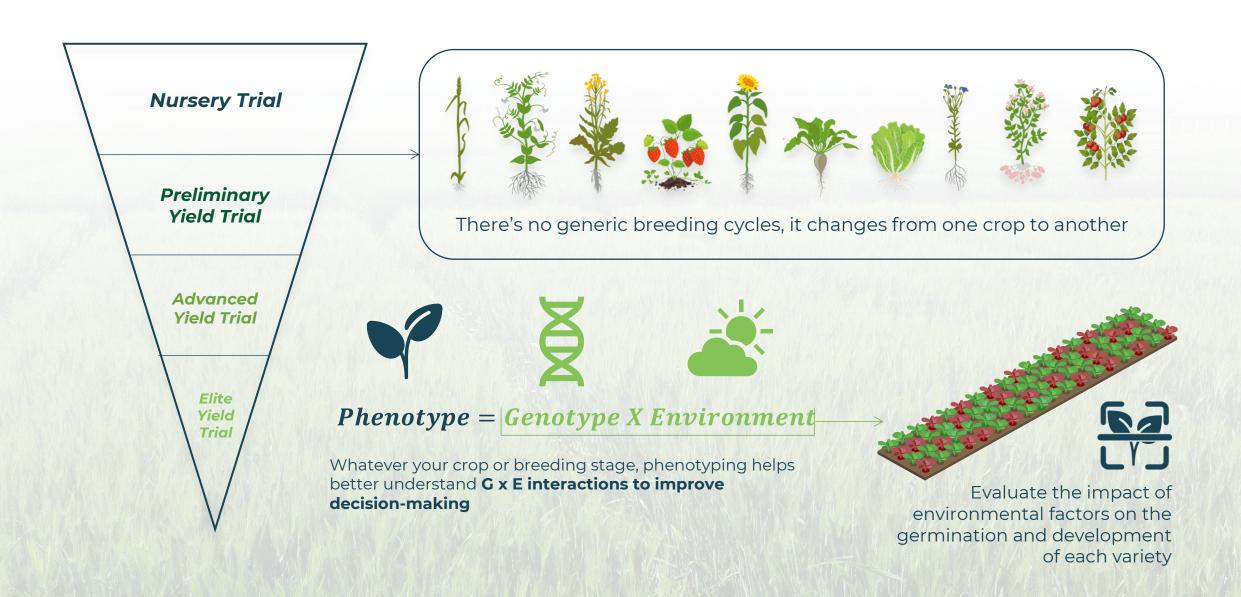
O	Genes	sys			Accession da	ta > D	irectory >	Resources	My Lis	t 0					
		_		A	and abiotic st	ress resistar	ice) in unreplic	cated field experi	ments.						
APPLY FILTERS Reset					Partner				AfricaRice Africa Rice Center						
☐ Pot	tato		8		Crop				Rice						
✓ Ric	e		30		Evaluation	Evaluation period January 1 2009 — January 1 2018									
Ric	ebean		1		Number of	accessions			8,994						
☐ Sap	oota		1		Number of	traits			50						
☐ Ses	same		2												
✓ Soi	rghum		5		Wheat	characte	erization	ı data							
✓ Soy	/bean		4												
☐ Spi	derplant		1		Partner				CIMMYT Interr	national Wheat and	l Maize Improvem	ent Center			
☐ Sqi	Squashes 2					Crop									
Sw	eetpotato		3		Evaluation	period			Date not provi	ided — Date not pr	rovided				
□ Тог	mato		4		Number of	accessions			14,145						
✓ Wh	neat		173		Number of	traits			13						
☐ Yar	m		4												
	LFSHP	▼ PUBDEN	→ PUBCOL	→ P	UBTYP ▼ PLH	TR1 → PL	.HTR8 ▼ N	OPBRN ▼ LOI	DGE - DAY	SFLO - CORCO	DL 🔻 MATURE	▼ NOPODS			
!	5	7	9	3	1	31.4	48	3.2	1	41	7	5			
	5	7	5	3	2	32.8	35.4	3.8	1	37	3	5			
	3	7	3	1	2	37.4	46	3	1	37	7	3			


AcceNumb	→ → LFSHP	▼ PUBDI	EN PUBCOL	▼ PUE	TYP PLHTR:	1 🔻	PLHTR8	NOPBRN -	LODGE	DAYSFLO	- (ORCOL MATURE	-	NOPODS -	SDNO -
VI026010	5	7	9	3	1	31.4	48	3.2	1	1	41	7	5	22.4	2.4
VI026011	5	7	5	3	2	32.8	35.4	3.8	1	1	37	3	5	34.3	3 2.4
VI026013	3	7	3	1	2	37.4	46	3	1	l	37	7	3	27	2.4
VI026014	3	7	3	1	3	15	15	1.7	1	l	37	7	3	18.9	2.3
VI026016	3	7	3	3	2	17	13.6	2.3	1	1	41	7	5	10.8	3 2.3
VI026017	3	7	5	3	1	22.4	23.4	1.8	1	1	37	3	5	25	2
VI026018	3	7	3	3	3	19.6	18.6	2.4		1	34	7	5	13.4	2.3
VI026019	3	7	7	3	1	24.6	27.4	1.5	:	1	36	7	5	25.3	2.5
VI026020	3	7	7	1	2	22.4	26.6	2.2	:	1	37	7	3	27.5	2.7
VI026021	3	7	7	1	3	37.6	33	2.1	. :	1	34	7	7	21.1	2.1
VI026022	5	7	3	3	3	26.4	22.2	2.5	:	1	36	3	7	26.6	2.1

Breeders View – Seed Bank Customers

Gene bank

The (Pre-)breeding pipeline continuum

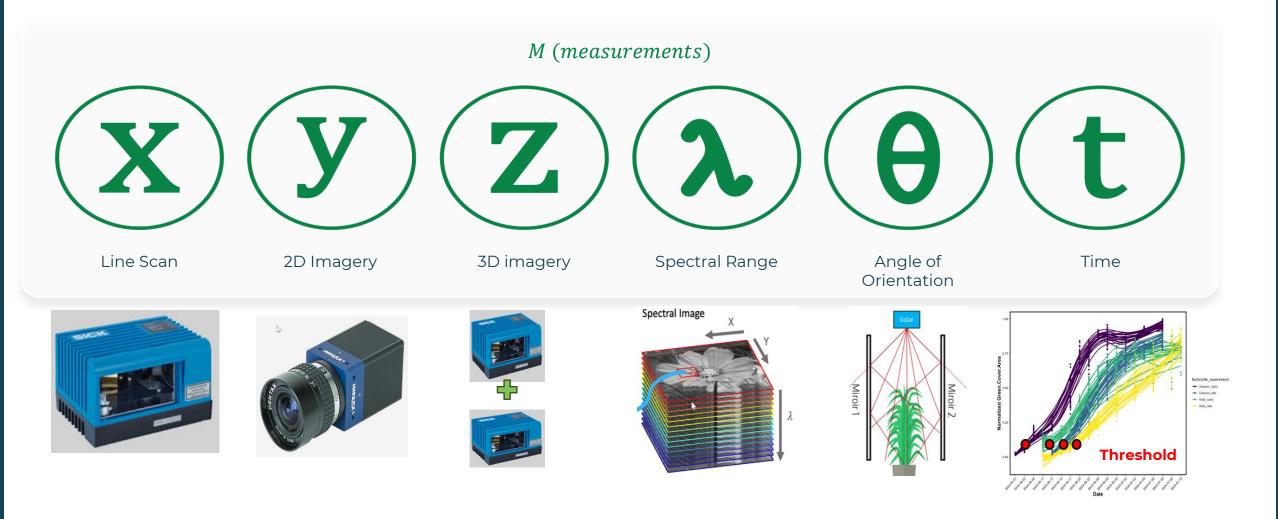

Langdon set (NDSU, Fargo)

icarda.org

Shivali et al. submitted. Introducing beneficial alleles from plant genetic resources into the wheat germplasm

Breeders View – Seed Bank Customers

In Practice – Phenotyping for Regeneration and In Situ Conservation


Characterization of Accessions – Image Acquisition Vectors

Trait Extraction— 6 Dimensions of Phenotyping

IMAGE ACQUISITION VECTORS

DRONES

Frictionless High-throughput Phenotyping

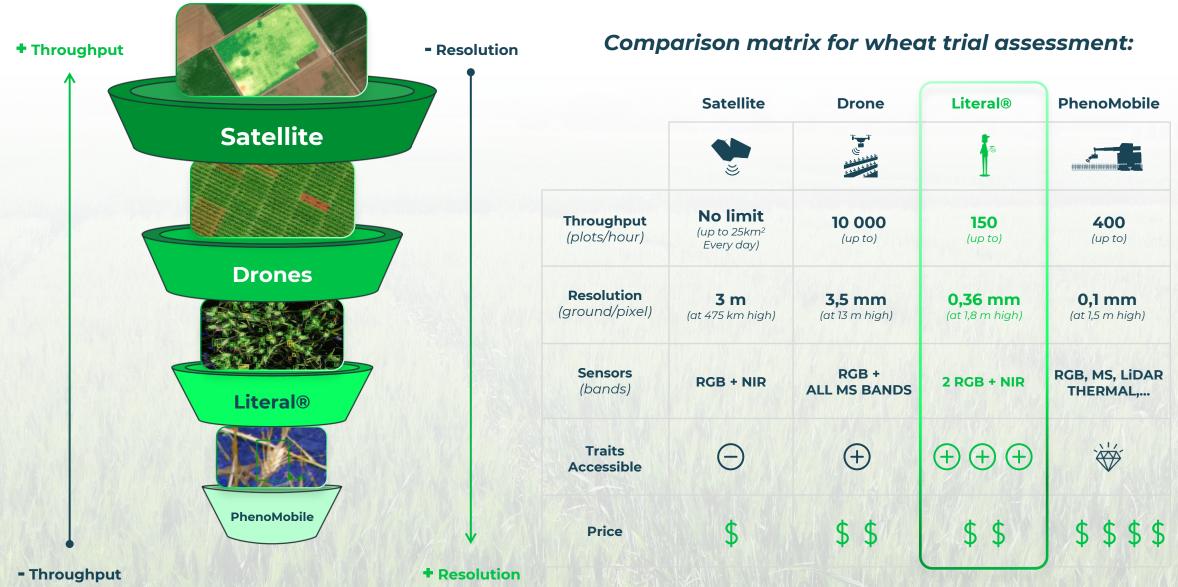
- Fast efficient image acquisition
- Automated processing
- Multi-sensor configuration
- Applicable for in situ conservation and regeneration

MANUAL GROUND IMAGING SYSTEMS

High-resolution Phenotyping

- Uncover new traits with high-resolution capabilities
- Automated processing
- Light & easy to operate
- Fixed sensors (RGB + NIR)

TRACTOR MOUNTED SENSOR ARRAYS


High-intensity Sampling

- Higher resolution imagery compared to drones
- On-site processing
- Multi-sensor configuration
- Tailored for stress-related plant research

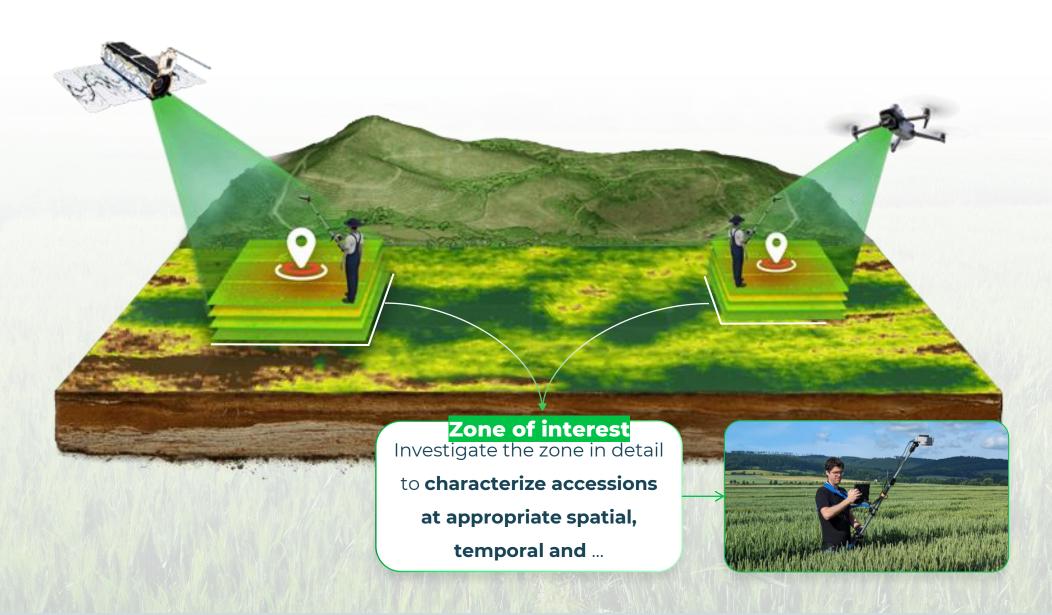
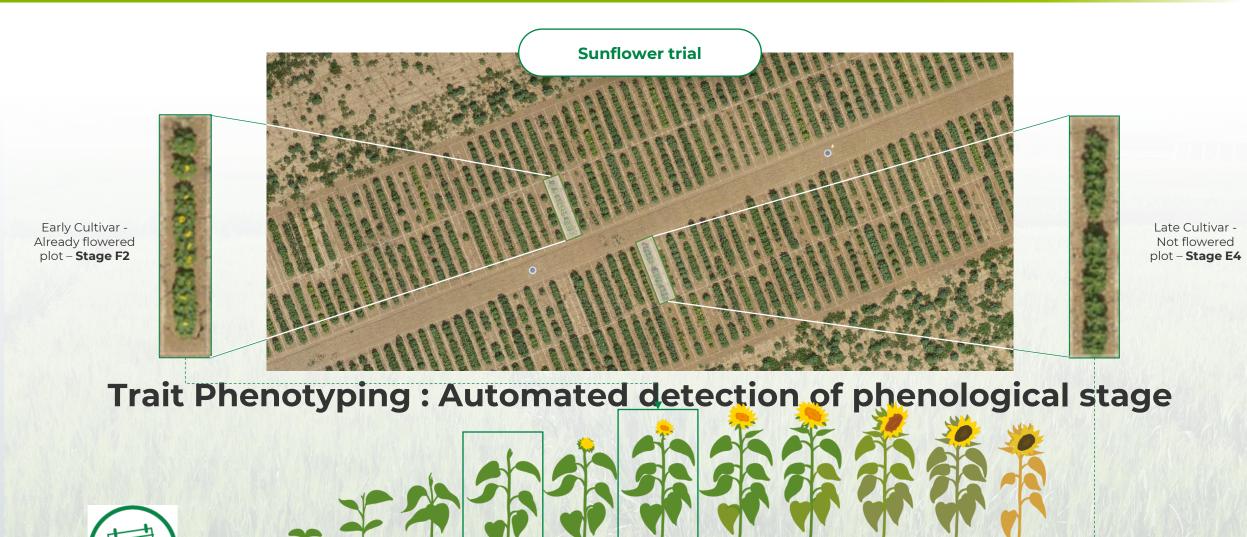

IMAGE ACQUISITION VECTORS — SPATIAL, SPECTRAL AND TEMPORAL RESOLUTION

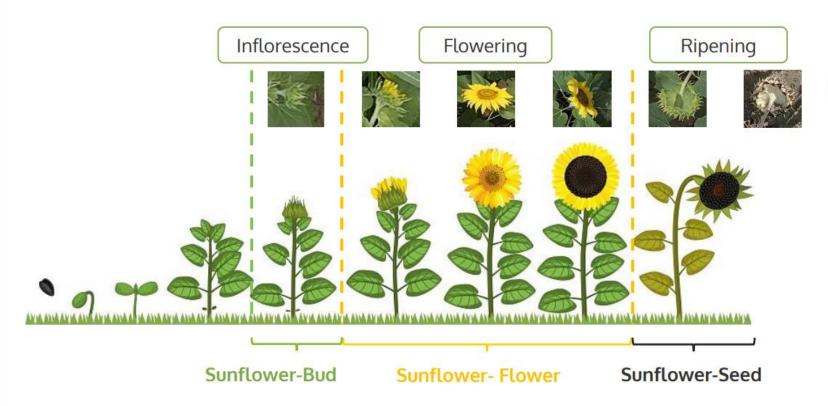
IMAGE ACQUISITION VECTORS — FUSING DATA FROM MULTIPLE VECTORS


Characterization of Accessions – Trait Extraction

TRAIT EXTRACTION—PHENOLOGICAL STAGE DETECTION

TRAIT EXTRACTION—DISEASE DETECTION

TRAIT EXTRACTION— EARLY VIGOR / SPEED TO CANOPY CLOSURE



Trait Extraction—Flower Count and Dynamics

Example with DJI Zenmuse P1 (focal length 35 eqv)									
Object size (mm)	GSD required (mm)	Altitude (m)							
40 → 300	4,5	15-18							

Descriptions:

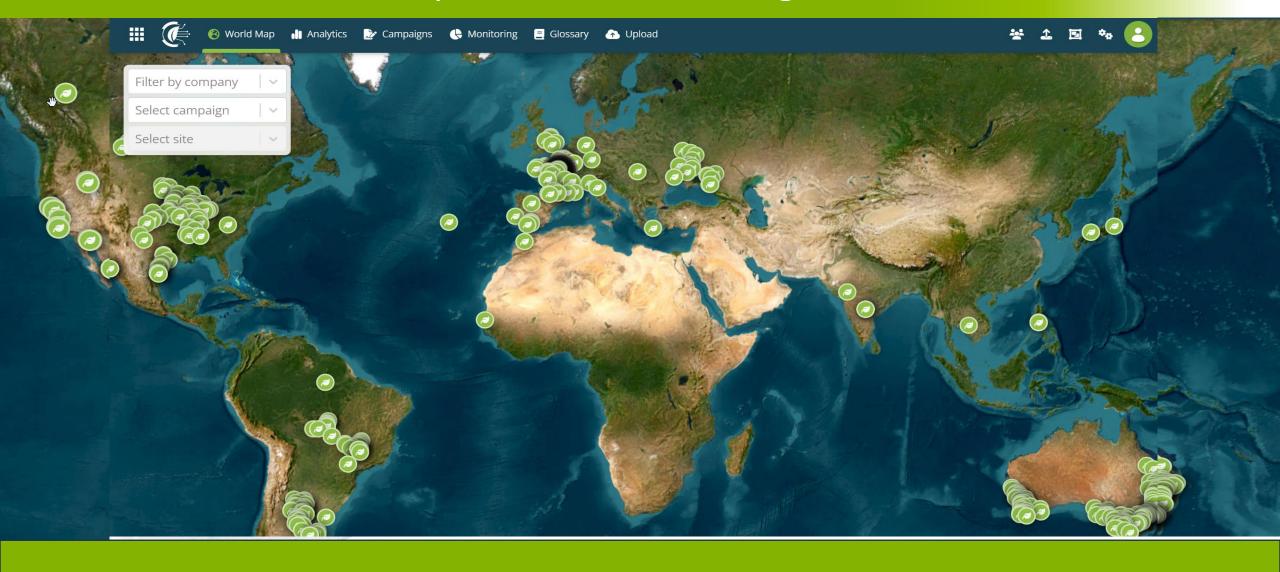
3 classes of sunflower heads provided:

- Sunflower-Bud: corresponding to head bud emergence till petals appearance;
- Sunflower- Flower: corresponding to flowering stage till head turning;
- Sunflower-Seed: corresponding to ripening stage till senescence beginning.

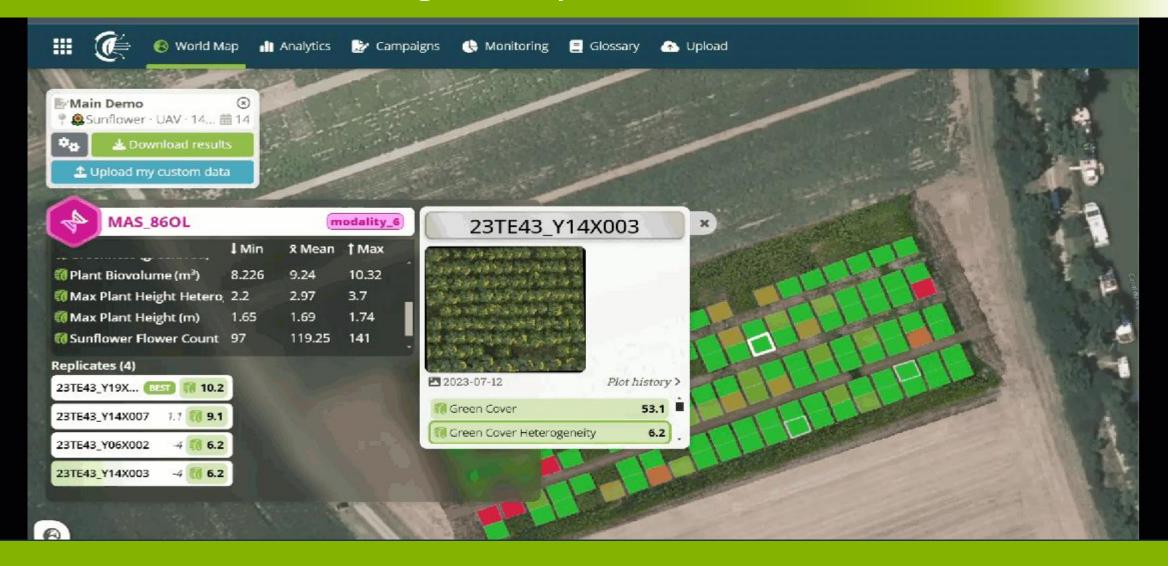
Drone Production Traits - Crop x Trait Matrix

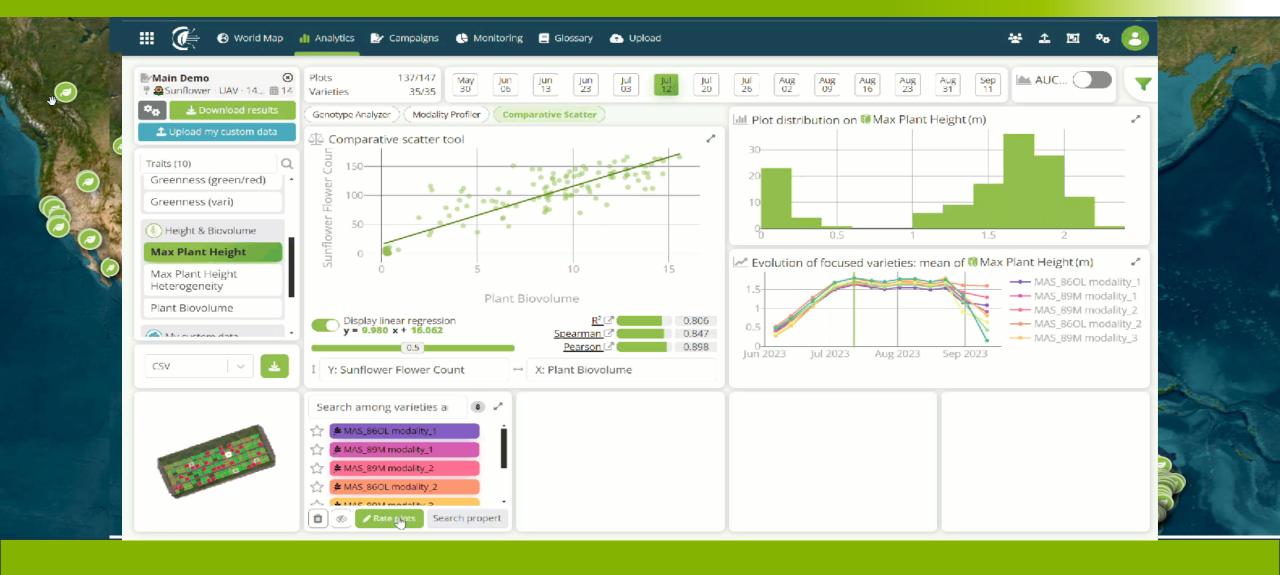
hiphen Agricultural Imaging Solutions			10								
		Traits	Maize	Wheat	OSR/Canola	Soy/Pulse	Sorghum	Sunflower	Rice	Veg*	Strawberry
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Trial Quality	Plant Count	RGB	N/A	N/A	RGB	RGB	RGB	RGB	RGB	RGB
		Border & Gap	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB
		Plant Lodging	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	N/A	RGB / MS
		Plot Heterogeneity	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB
6:110	Canopy Development	Green Cover	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS
		Greenness	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB
		Early Vigor	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS
		Maturity/Senescence	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS
		Flowering	RGB	RGB	RGB	RGB	N/A	RGB	N/A	RGB	RGB
	Biomass	Height & Biovolume	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB	RGB
	Proxy	Leaf Area Index	мѕ	мѕ	MS	MS	MS	MS	MS	MS	мѕ
	Requires Specific	Chlorophyll Content	мѕ	MS	MS	MS	MS	MS	MS	MS	MS
	Flight Protocol	Vegetation Indices	мѕ	MS	MS	MS	MS	MS	MS	MS	MS
	Harvest Index	Organs Count	RGB	RGB	N/A	N/A	RGB	RGB	N/A	N/A	RGB
	& Quality	Organs Density	RGB	RGB	N/A	N/A	RGB	RGB	N/A	N/A	RGB
	Requires High Resolution	Plot Area	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS	RGB / MS

Literal Production Traits - Crop x Trait Matrix



DATA VISUALIZATION, IMAGE QUERY, AND ANALYTICS




Cloverfield Platform – Upload and View Images and Data

Cloverfield Platform – Image Query – Plots Across Time

Cloverfield Platform – Researcher Eye Rating Tool

Cloverfield Platform – Analytics and Image Query

New Frontiers in Image Analytics - Phenomic Prediction

Phenomic Prediction – Predicting Seed Humidity

Phenomic Breeding values

Imaging domain

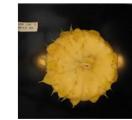
Encoding tech

Decoding fidelity

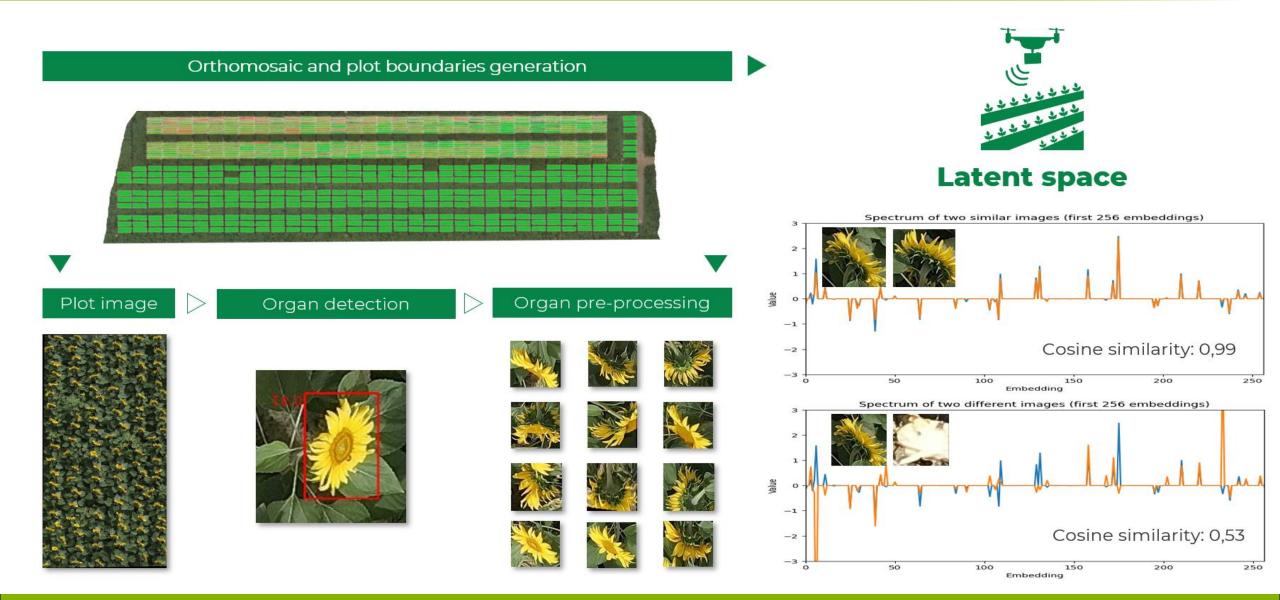
Spectral diversity

Similarity matrix

Prediction accuracy



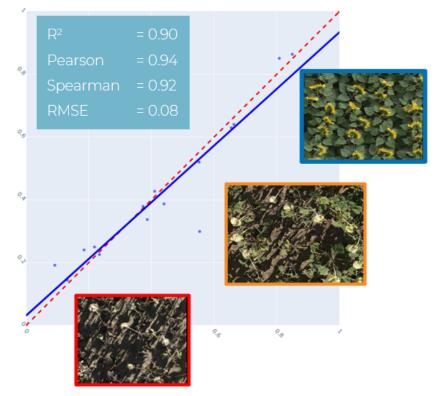
European project with 18 research partners to develop new **sunflower** varieties more resistant to high temperatures and drought

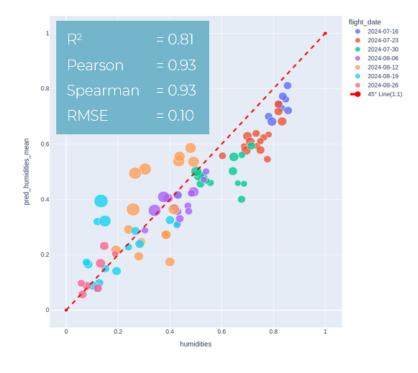


- DJI Matrice 300
- Zenmuse P1 50mm
- 7 flights
- GSD = 0.15cm/pixel

Predicting Seed humidity % from 2 capitulum per plot per flight

Phenomic Prediction – Latent Space and Kinship/Similarity Matrices


Phenomic Prediction – Testing Predictions and Gaining Confidence


Model trained in France 2023

Prediction in France 2023

Every plant at every date has a seed humidity

INDUSTRY PARTNER NETWORK

eurofins

CHAMPAGNE

RESEARCH PARTNER NETWORK

Imaging Solutions for Seed Banks
Characterization of Accessions During Regeneration

Lwest@Hiphen-Plant.com